
Project 5 - Filesystems
4/25/2012



Overview

● Filesystems Background
● GeekOS Filesystem (GOSFS)

○ Background
○ Format
○ Mount
○ Other operations

 
 
 
 
 
 



What is a Filesystem?

Resource Manager
● a means to organize data

 
 
 
 
 
 
 



What is a Filesystem?

Resource Manager
● a means to organize data (and accesses to that 

data)
 
 
 
 
 
 
 



What is a Filesystem?

Resource Manager
● a means to organize data (and accesses to that 

data)
○ usually, data organized into "files"

■ File - named sequence of bytes (with 
metadata)

○ usually, use directories to organize files
 
So, in the end, basically just something that manages files, 
usually in a directory structure.
 
 
 
 
 
 
 



How to manage files?

● Manage Filesystem
○ Format

■ structure "something" as needed for filesystem
○ Mount

■ "Take the file system from this CD-ROM and make it appear 
under such-and-such directory" - Wikipedia

● Manage Files
○ Open, Close
○ Read, Write
○ Stat
○ Seek
○ etc.

● How to do this? Answer
 
 
 
 

http://en.wikipedia.org/wiki/List_of_file_systems


Common Filesystem Operations

● Because many ways to organize data, good to have 
standard ways to use filesystems via abstractions

 
 
 
 
 
 
 
 



Summary

Filesystem is something that manages files and 
accesses to files.
 
This is done by implementing some basic 
functions. (From which can build on to do more)



GeekOS Filesystem
Background



GeekOS Filesystem (GOSFS)
● On startup detects devices (e.g ide0, ide1)

○ diskc.img (pfat), diskd.img (gosfs here)
○ Associates Block_Device with them

● Automatically mounts ide0 (pfat)
● Shell starts
● You will format ide1 into GOSFS format

○ look at p5test.c:ttestFormat()
● Mount ide1

○ use Mount user program provided
■ can also look at p5test.c:ttestMount()

● Use your filesystem to do stuff
○ look at p5test.c



Interacting with Disk

● Block_Read(struct Block_Device *dev, int blockNum, 
void *buf)

 
● Block_Write(struct Block_Device *dev, int blockNum, 

void *buf)
 

● Writes a SECTOR_SIZE at a time so need to do 8x 
to write a 4KB block

● This Block_Device is available in all of the functions
○ mountPoint->dev
○ file->mountPoint->dev



Useful data structure

 
 
 
 
 
 

● Directory: blocks[0] contains block number of 4KB block
○ That 4KB block contains an array of more GOSFSfileNodes

● File: blocks[0] to blocks[7] "point" to data
○ blocks[8] "points" to block of more pointers to data (indirect block)
○ blocks[9] - double indirect block

 
 
Similar to "inode" if you want to read about it



GOSFS_Format

● Make the disk look like:
 
 



GOSFS_Mount

● Verify superblock
○ Verify magic number

 
● mountPoint->op

○ need to give function pointers so tha vfs knows 
how to handle operations (can look at pfat and 
vfs to understand what is expected here)

 
● mountPoint->fsData

○ up to you



GOSFS_*

● Modify passed File * as needed
 

● Read / write contents of disk as needed



Other comments

● VFS does much of the "File" stuff for you, make sure to read over vfs.c 
to know how your code will fit in

 

● Project 6 builds on Project 5, will definitely need at least Format / 
Mount / Open working

 

● Use p5test.c to test, since doing disk operations, expect server testing 
to be somewhat slow...

 

● gosfs.c starts at ~100 lines, not unusual for final implementation here 
to be 1000+ lines...


